基本信息
办公电话:027-87288183
移动电话:13164628652
电子邮件:zoujun@mail.hzau.edu.cn
办公地址:二综B315
Ø 2009年毕业于华中农业大学发育生物学专业,获理学博士学位。随后在本校作物学博士后流动站从事油菜育种资源创新及种间杂交后代的基因组结构变异研究,2012年留校任教,主要研究方向为油菜种质资源创新及其基因组学。
Ø 主要研究工作有:1)基于芸薹属亚基因组的大规模重构与渗透开展油菜种质创新与利用研究,2)种间杂交及外源种质渗透后代的基因组结构变异与遗传进化研究;3)油菜复杂性状的遗传解析和全基因组选择研究
Ø 研究工作经历(按时间倒排序):
2012/03 — 至今, 华中农业大学、十大正规外围买球平台、教师
2015/09—2016/09,德国吉森尤斯图斯-李比希大学,植物育种所,访问研究
2014/10—2015/01,德国吉森尤斯图斯-李比希大学,植物育种所,访问研究
2011/10—2012/01,澳大利亚新南威尔士州沃加农业研究所,访问研究
2010/01—2012/02,华中农业大学,作物学博士后流动站,博士后
1. 国家自然科学基金面上项目,在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配,2022.01-2025.12(在研、主持)
2. 国家自然科学基金面上项目,“新型”甘蓝型油菜的基因组结构变异,2020.01-2023.12(在研、主持)
3. 国家自然科学基金国际(地区)合作与交流项目-组织间合作研究NSFC-DFC(中德)项目, 与异源多倍体染色体碰撞相关的杂种优势全基因组模式分析, 2019.01-2021.12(在研、主持)
4. 国际(地区)合作与交流项目,中德合作,Towards new Brassica crops: genetic improvement of Brassica hexaploids , 2017/08-2021/12(在研,参加)
5. 国家重点研发计划,油菜杂种优势利用技术与强优势杂交种创制. 课题编号:2016YFD0101300,项目年限:2016-2020(已结题,参加)
6. 国家重点基础研究发展计划,油菜高产油量形成的分子生物学机制,课题编号:2015CB250100,项目年限:2015/01-2019/12(已结题,参加)
7. 湖北省自然科学基金重点项目(创新群体类),油菜杂种优势利用的种质资源创制,课题编号:ZRZ2014000189,项目年限:2015/01-2017/12(已结题,参加)
8. 国家自然科学基金国际(地区)合作与交流项目/在华召开国际(地区)学术会议(非组织间协议项目),第19届十字花科植物遗传学会及芸薹属2014年年会,课题编号:31410303006,项目年限:2014/01-2014/12(已结题,主持)
9. 国家自然科学基金青年科学基金项目,杂交导致的油菜基因组胁迫与转座子激活的联系及其遗传效应,31100876,2012/01-2014/12(已结题,主持)
10. 国家自然科学基金重点项目,新型甘蓝型油菜ArCc基因资源库的创建、评估和优异种质资源的选育, 2009/01-2012/12(已结题,参加)
11. 中国博士后科学基金,新型甘蓝型油菜及其杂种基因组内反转座子的活动,2010/06-2011/12(已结题,主持)
中文核心期刊:《种子产业化与技术》课程创新教学模式初探 邹珺,王燕,罗子良,刘培发,余四斌*
人才培养:指导了23位本科生毕业论文、17位研究生毕业论文,1位获校级优秀硕士论文,1位获校级优秀博士论文
1. 华中农业大学2020年度 教学质量优秀二等奖
2. 华中农业大学2020年度暑期社会实践优秀指导教师
3. 华中农业大学 2018-2019年度 优秀班主任
4. 十大正规外围买球平台 2018年度 青年教师教学技能竞赛二等奖
5. 华中农业大学 2013年度 教学质量优秀二等奖
学术论文
发表研究论文50篇,累计引用1020次,H指数22(web of science, 202109);其中以第一或通讯作者(含共同)在Plant Biotechnology Journal(4篇,IF5年均=9.8)、Plant Journal(1篇,IF5年均=6.4), Journal of Experimental Botany(1篇,IF5年均=6.9)、Theoretical and Applied Genetics(4篇,IF5年均=5.6)、The Crop Journal(1篇,IF5年均=4.4)等SCI期刊发表论文19篇
2021
2. Zhang K, Mason A, Farooq M, Islam F, Quezada-Martinez D, Hu D, Yang S, Zou J*, Zhou W*. Challenges and prospects for a potential allohexaploid Brassica crop. Theoretical and Applied Genetics, 2021, June 04, first online, https://doi.org/10.1007/s00122-021-03845-8 134, 2711–2726
2020
1. Hu D#, Zhao Y#, Shen J, He X, Zhang Y, Jiang Y, Snowdon R, Meng J, Reif JC*, Zou J*. Genome-wide prediction for hybrids between parents with distinguished difference on exotic introgressions in Brassica napus. The Crop Journal, https://doi.org/10.1016/j.cj.2020.11.002
2. 秦晗,张文姗,王猛,熊思灿,胡丹丹,孙秀丽,胡莲莲,孟金陵,邹珺*。四个芸薹属物种硫苷比较及特殊硫苷种间导入。植物遗传资源学报,2020,21(01):94-104.
2019
1. Zou J#, Mao L#, Qiu J#, Wang M, Jia L, Wu D, He Z, Chen M, Shen Y, Shen E, Huang Y, Li R, Hu D, Shi L, Wang K, Zhu Q, Ye C, Bancroft I, King G, Meng J, Fan L*. Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal, 2019, 17(10): 1998-2010. April 4 first online, https://doi.org/10.1111/pbi.13115(20 citations)
2. Hu D, Zhang W, Zhang Y, Chang S, Chen L, Chen Y, Shi Y, Shen J, Meng J, Zou J*. Reconstituting the genome of a young allopolyploid crop, Brassica napus, with its related species. Plant Biotechnology Journal, 2019, 17 (6): 1106-1118. https://doi.org/10.1111/pbi.13041 (8 citations)
2018
1. Zou J#*, H D#, Mason A, Shen X, Wang X, Wang N, Grandke F, Wang M, Chang S, Snowdon R, Meng J. Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnology Journal, 2018, 16(2), 507-519, doi: 10.1111/pbi.12791 (22 citation)
2. Luo Z#, Wang M#, Long Y, Huang Y, Shi L, Zhang C, Liu X, Fitt B, Xiang J, Mason A, Snowdon R, Liu P, Meng J, Zou J*. Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet., 2018, 131(2), 497, equal to 2017, 130(8), 1569-1585, doi:10.1007/s00122-017-3005-2 (33 citation)
2017
1. Liu P#, Zhao Y#, Liu G, Wang M, Hu D, Hu J, Meng J, Reif JC*, Zou J*. Hybrid Performance of an immortalized F2 rapeseed population is driven by additive, dominance, and epistatic effects. Front. Plant Sci., 2017, 8:815. doi: 10.3389/fpls.2017.00815 (11 citations)
2. Zhang W#, Hu D#, Raman R, Guo S, Wei Z, Shen X, Meng J, Raman H*, Zou J*. Investigation of the genetic diversity and quantitative trait loci accounting for important agronomic and seed quality traits in Brassica carinata. Front. Plant Sci.,2017, 8:615. doi: 10.3389/fpls.2017.00615 (15 citations)
2016
1. Zou J#*, Zhao Y#, Liu P, Shi L, Wang X, Wang M, Meng J, Reif J*. Seed quality traits can be predicted with high accuracy in Brassica napus using genomic data. PLoS ONE, 2016, 11(11): e0166624. doi:10.1371/journal.pone.0166624 (16 citation)
2. Wei Z, Wang M, Chang S, Wu C, Liu P, Meng J, Zou J*.Introgressing subgenome components from Brassica rapa and B. carinata to B. juncea for broadening its genetic base and exploring intersubgenomic heterosis. Front. Plant Sci., 2016, 7:1677. doi: 10.3389/fpls.2016.01677 (15 citations)
3. Zou J, Hu D, Liu P, Raman H*, Liu Z*, Liu X, Parkin IA, Chalhoub B, Meng J*. Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics, 2016, 17(1):18. doi: 10.1186/s12864-015-2343-1 (15 citations)
2015-2012
1. Shen E#, Zou J#, Behrens F#, Chen L, Ye C, Dai S, Li R, Ni M, Jiang X, Qiu J, Liu Y, Wang W, Zhu Q, Chalhoub B, Bancroft I, Meng J, Cai D*, Fan L*. Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brasscia napus. Journal of Experimental Botany, 2015, 66(22): 7241-7253 doi:10.1093/jxb/erv420 (32 citations)
2. Zou J, Raman H*, Guo S, Hu D, Wei Z, Luo Zi, Long Y, Shi W, Fu Zhong, Du D, Meng J*. Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata. Theoretical and Applied Genetics, 2014, 127(7): 1593-1605 (23 citations)
2012前
1. Zou J#, Fu D#, Gong H, Qian W, Xia W, Pires C, Li R, Long Y, Mason A, Yang T, Lim Y, Beom S, Meng J*. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a RIL population of Brassica napus derived from interspecific hybridization with B. rapa. The Plant Journal, 2011, 68(2):212-224 (61citations)
2. Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Tu J, Fu T, Meng J*. Broadening the avenue of intersubgenomic heterosis for oilseed Brassica. Theoretical and Applied Genetics, 2010, 120: 283-290 (64 citations)
3. Zou J#, Jiang C#, Cao Z, Li R, Long Y, Chen S, Meng J*. Association mapping of seed oil content in different Brassica napus populations and its coincidence with QTL identified from linkage mapping. Genome, 2010, 53: 908-916 (54 citations)
4. Chen S#, Zou J#, Cowling W, Meng J*. Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop & Pasture Science, 2010, 61, 483-492 (25 citations)
5. Zou J, Gong H, Yang Tae-Jin, Meng J*. Retrotransposons - a Major Driving Force in Plant Genome Evolution and a Useful Tool for Genome Analysis. J. Crop. Sci. Biotech., 2009, 12 (1):1-8 (16 citations)
6. Zou J, Fu D, Gong H, Tian E, Xiao Y, Huang S, Meng J*. How far we could go on modifying U’s triangle for rapeseed breeding? The Fifteenth Biennial Australian Research Assembly On Brassicas: conference proceedings. Geraldton, Western Australia. November, 2007. Full paper and abstract: 126-130.
以合作者身份发表SCI期刊论文26篇, 部分论文如下:
1. He Z, Ji R, Havlickova L, Wang L, Li Y, Lee H, Song J, Koh C, Yang J, Zhang M, Parkin I, Wang X, Edwards D, King G, Zou J, Liu K, Snowdon R, Banga S, Machackova I, Bancroft I*. Genome structural evolution in Brassica crops. Nature Plants. 2021, xx:xx. Doi: 10.1038/s41477-021-00928-8
2. Cheng T, Zhao P, Ren Y, Zou J, Sun M*. AtMIF1 increases seed oil content by attenuating GL2 inhibition. New Phytologist, 2021, 229(4):2152-2162, https://doi.org/10.1111/nph.17016
3. Zhang L, Zou J, Li S, Wang B, Raboanatahiry N, Li M. Characterization and expression profiles of miRNAs in the triploid hybrids of Brassica napus and Brassica rapa. BMC Genomics, 2019, 20(1): 64
4. Wang R, Liu H, Liu Z, Zou J, Meng J, Wang J. Genome-wide analysis of alternative splicing divergences between Brassica hexaploid and its parents. PLANTA, 2019, 250(2): 603-628
5. Wang R, Zou J, Meng J, Wang J. Integrative analysis of genome-wide lncRNA and mRNA expression in newly synthesized Brassica hexaploids. Ecology and evolution, 2018, 8(12): 6034-6052
6. Shah Smit, Weinholdt C, Jedrusik N, Molina C, Zou J, GroSSe I, Schiessl S, Jung C, Emrani N. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Plant, cell & environment. 2018, 41(8): 1935-1947, doi:10.1111/pce.13353
7. Bayer P, Hurgobin B, Golicz A, Chan C, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King G, Batley J, Edwards D. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnology Journal, 2017, 15(12), 1602-1610, doi : 0000-0002-0684-586X
8. Dai S, Hou J, Long Y, Wang J, Li C, Xiao Q, Jiang X, Zou X , Zou J, Meng J. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae. BMC Plant Biology, 2015, 15:149
9. Wang G, Ding G, Li L, Cai H, Ye X, Zou J, Xu F. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Annals of Botany, 2014, 114 (3): 549-5
10. Shen Y, Zhao Q, Zou J, Wang W, Gao Y, Meng J, Wang J. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids. Plant Molecular Biology, 2014, 85:287-299
教材与著作
1. 邹珺,孟金陵. 第八章,油菜种质资源创新与杂种优势利用. 涂金星等编著,油菜杂种优势利用的生物学基础. 2018,北京,科学出版社,9ISBN978-7-03-058545-5.267-286页
2. Zou J, Wang N, Meng J. Chapter 8, Mutagenesis. In: Edwards D, Batley J, Parkin IAP, Kole C (eds) Genetics, Genomics and Breeding of Oilseed Brassicas. Science Publishers, CRC press, USA, 2011, pp 158-173
近五年在国内外学术会议的口头报告
1. 2020.01.04-05,湖北武汉,第一届全国油菜生物学学术研讨会,大会报告,甘蓝型油菜中近缘物种亚基因组间遗传变异的渗透与种质资源创新
2. 2019.06.16-19,德国柏林,The 15th International Rapeseed Congress, 大会分组报告,Expanding a novel gene pool of Brassica napus with massive introgression of related oilseed species and exploring its intersubgenomic heterosis
3. 2018.03.26-28,湖北武汉,The international rapeseed genome workshop (China-Canada), 大会 报告,Exploring subgenomic variation in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata
4. 2017.09.03-07,德国吉森,The 4th International Symposium on Genomics of Plant Genetic Resources, 大会报告, Development and evaluation of a novel gene pool of Brassica napus with introgression of genomic variation between and within related oilseed species
5. 2017.09.28-29,湖北武汉,第八届湖北植物生物学大会,大会报告,人工合成甘蓝型油菜群体中亚基因组遗传变异
6. 2016.10.03-07,澳大利亚墨尔本,The 20th Crucifer Genetics Conference, Brassica 2016, and the 19th Australian Research Assembly, 大会分组报告,Investigation and improvement of the genome stability and genetic diversity of advanced allohexaploids derived from different interspecific cross origins